My Dominant Hemisphere

The Official Weblog of 'The Basilic Insula'

Posts Tagged ‘Exploration

Seeking Profundity In The Mundane

leave a comment »

seeking a new vision

Seeking A New Vision (via Jared Rodriguez/Truthout CC BY-NC-SA license)

The astronomer, Carl Sagan once said:

It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we’ve ever known.

— in the Pale Blue Dot

And likewise Frank Borman, astronaut and Commander of Apollo 8, the first mission to fly around the Moon said:

When you’re finally up on the moon, looking back at the earth, all these differences and nationalistic traits are pretty well going to blend and you’re going to get a concept that maybe this is really one world and why the hell can’t we learn to live together like decent people?

Why is it I wonder, that we the human race, have the tendency to reach such profound truths only when placed in an extraordinary environment? Do we have to train and become astronomers or cosmonauts to appreciate our place in the universe? To find respect for and to cherish what we’ve been bestowed with? To care about each other, our environment and this place that we are loath to remember is the one home for all of life as we know it?

There is much to be learned by reflecting upon this idea. Our capacity to gain wisdom and feel impressed really does depend on the level to which our experiences deviate from the banal, doesn’t it? Ask what a grain of food means to somebody who has never had the luxury of a mediocre middle-class life. Ask a lost child what it must be like to have finally found his mother. Or question the rejoicing farmer who has just felt rain-drops on his cheeks, bringing hope after a painful drought.

I’m sure you can think of other examples that speak volumes about the way we, consciously or not, program ourselves to look at things.

The other day, I was just re-reading an old article about the work of biomathematician, Steven Strogatz. He mentioned how as a high-school student studying science, he was asked to drop down on his knees and measure the dimensions of floors, graph the time periods of pendulums and figure out the speed of sound from resonating air columns in hollow tubes partly filled with water, etc. Each time, the initial reaction was that of dreariness and insipidity. But he would then soon realize how these mundane experiments would in reality act as windows to profound discoveries – such as the idea that resonance is something without which atoms wouldn’t come together to form material objects or how a pendulum’s time period when graphed reflects a specific mathematical equation.

There he was – peering into the abstruse and finding elegance in the mundane. The phenomenon reminded me of a favorite quote:

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

Marcel Proust

For that’s what Strogatz, like Sagan and Borman was essentially experiencing. A new vision about things. But with an important difference – he was doing it by looking at the ordinary. Not by gazing at extra-ordinary galaxies and stars through a telescope. Commonplace stuff, that when examined closely, suddenly was ordinary no more. Something that had just as much potential to change man’s perspective of himself and his place in the universe.

I think it’s important to realize this. The universe doesn’t just exist out there among the celestial bodies that lie beyond normal reach. It exists everywhere. Here; on this earth. Within yourself and your environment and much closer to home.

Perhaps, that’s why we’ve made much scientific progress by this kind of exploration. By looking at ordinary stuff using ordinary means. But with extra-ordinary vision. And successful scientists have proven again and again, the value of doing things this way.

The concept of hand-washing to prevent the spread of disease for instance, wasn’t born out of a sophisticated randomized-clinical trial. But by a mediocre accounting of mortality rates using a much less developed epidemiologic study. The obstetrician who stumbled upon this profound discovery, long before Pasteur later postulated the germ theory of disease, was called Ignaz Semmelweis, later to be known as the “savior of mothers”. His new vision led to the discovery of something so radical, that the medical community of his day rejected it and his results were never seriously looked at during his lifetime (So much for peer-review, eh?). The doctor struggled with this till his last breath, suffering at an insane asylum and ultimately dying at the young age of 47.

That smoking is tied with lung cancer was first conclusively learned by an important prospective cohort study that was largely done by mailing a series of questionnaires out to smoking and non-smoking physicians over a period of time, asking how they were doing. Yes, even questionnaires, when used intelligently, could be more than just unremarkable pieces of paper; they could be gateways that open our eyes to our magnificent universe!

From the polymath and physician, Copernicus’s seemingly pointless calculations on the positions of planets to the dreary routine of looking at microbial growth in petri-dishes by physician Koch, to physicist and polymath, Young‘s proposal of a working theory for color vision, to the physician, John Snow’s phenomenal work on preventing cholera by studying water wells long before the microbe was even identified, time and time again we have learned about the enormous implications of science on the cheap. And science of the mundane. There’s wisdom in applying the KISS (Keep It Simple Stupid) principle to science after all! Even in the more advanced technologically replete scientific studies.

More on the topic of finding extraordinary ideas in ordinary things, I was reminded recently of a couple of enchanting papers and lectures. One was about finding musical patterns in the sequence of our DNA. And the second was an old but interesting paper1 that proposes a radical model for the biology of the cell and that seeks to reconcile the paradoxes that we observe in biological experiments. That there could be some deep logical underpinning to the maxim, “biology is a science of exceptions”, is really quite an exciting idea:

Surprise is a sign of failed expectations. Expectations are always derived from some basic assumptions. Therefore, any surprising or paradoxical data challenges either the logical chain leading from assumptions to a failed expectation or the very assumptions on which failed expectations are based. When surprises are sporadic, it is more likely that a particular logical chain is faulty, rather than basic assumptions. However, when surprises and paradoxes in experimental data become systematic and overwhelming, and remain unresolved for decades despite intense research efforts, it is time to reconsider basic assumptions.

One of the basic assumptions that make proteomics data appear surprising is the conventional deterministic image of the cell. The cell is commonly perceived and traditionally presented in textbooks and research publications as a pre-defined molecular system organized and functioning in accord with the mechanisms and programs perfected by billions years of biological evolution, where every part has its role, structure, and localization, which are specified by the evolutionary design that researchers aim to crack by reverse engineering. When considered alone, surprising findings of proteomics studies are not, of course, convincing enough to challenge this image. What makes such a deterministic perception of the cell untenable today is the massive onslaught of paradoxical observations and surprising discoveries being generated with the help of advanced technologies in practically every specialized field of molecular and cell biology [1217].

One of the aims of this article is to show that, when reconsidered within an alternative framework of new basic assumptions, virtually all recent surprising discoveries as well as old unresolved paradoxes fit together neatly, like pieces of a jigsaw puzzle, revealing a new image of the cell–and of biological organization in general–that is drastically different from the conventional one. Magically, what appears as paradoxical and surprising within the old image becomes natural and expected within the new one. Conceptually, the transition from the old image of biological organization to a new one resembles a gestalt switch in visual perception, meaning that the vast majority of existing data is not challenged or discarded but rather reinterpreted and rearranged into an alternative systemic perception of reality.

— (CC BY license)

Inveigled yet 🙂 ? Well then, go ahead and give it a look!

And as mentioned earlier in the post, one could extend this concept of seeking out phenomenal truths in everyday things to many other fields. As a photography buff, I can tell you that ordinary and boring objects can really start to get interesting when viewed up close and magnified. A traveler who takes the time to immerse himself in the communities he’s exploring, much like Xuan Zang or Wilfred Thesiger or Ibn Battuta, suddenly finds that what is to be learned is vast and all the more enjoyable.

The potential to find and learn things with this new way to envision our universe can be truly revolutionary. If you’re good at it, it soon becomes hard to ever get bored!

Footnotes:

  1. Kurakin, A. (2009). Scale-free flow of life: on the biology, economics, and physics of the cell. Theoretical Biology and Medical Modelling, 6(1), 6. doi:10.1186/1742-4682-6-6


Copyright Firas MR. All Rights Reserved.

“A mote of dust, suspended in a sunbeam.”


Search Blog For Tags: , , , ,

Written by Firas MR

November 13, 2010 at 10:48 am

Let’s Face It, We Are Numskulls At Math!

with one comment

Noted mathematician, Timothy Gowers, talks about the importance of math

I’ve often written about Mathematics before Footnotes. As much as math helps us better understand our world (Modern Medicine’s recent strides have a lot to do with applied math for example), it also tells us how severely limited man’s common thinking is.

Humans and yes some animals too, are born with or soon develop an innate ability for understanding numbers. Yet, just like animals, our proficiency with numbers seems to stop short of the stuff that goes beyond our immediate activities of daily living (ADL) and survival. Because we are a higher form of being (or allegedly so, depending on your point of view), our ADLs are a lot more sophisticated than say those of, canaries or hamsters. And consequently you can expect to see a little more refined arithmetic being used by us. But fundamentally, we share this important trait – of being able to work with numbers from an early stage. A man who has a family with kids knows almost by instinct that if he has two kids to look after, that would mean breakfast, lunch and dinner times 2 in terms of putting food on the table. He would have to buy two sets of clothes for his kids. A kid soon learns that he has two parents. And so on. It’s almost natural. And when someone can’t figure out their way doing simple counting or arithmetic, we know that something might be wrong. In Medicine, we have a term for this. It’s called acalculia and often indicates the presence of a neuropsychiatric disorder.

It’s easy for ‘normal’ people to do 2 + 2 in their heads. Two oranges AND two oranges make a TOTAL of four oranges. This basic stuff helps us get by day-to-day. But how many people can wrap their heads around 1 divided by 0? If you went to school, yea sure your teachers must have hammered the answer into you: infinity. But how do you visualize it? Yes, I know it’s possible. But it takes unusual work. I think you can see my point, even with this simple example. We haven’t even begun to speak about probability, wave functions, symmetries, infinite kinds of infinities, multiple-space-dimensions, time’s arrow, quantum mechanics, the Higgs field or any of that stuff yet!

As a species, it is so obvious that we aren’t at all good at math. It’s almost as if we construct our views of the universe through this tunneled vision that helps us in our day-to-day tasks, but fails otherwise.

We tend to think of using math as an ability when really it should be thought of as a sensory organ. Something that is as vital to understanding our surroundings as our eyes, ears, noses, tongues and skins. And despite lacking this sense, we tend to go about living as though we somehow understand everything. That we are aware of what it is to be aware of. This can often lead to trouble down the road. I’ve talked about numerous PhDs having failed at the Monty Hall Paradox before. But a recent talk I watched, touched upon something with serious consequences that meant people being wrongfully convicted because of a stunted interpretation of DNA, fingerprint evidence, etc. by none other than “expert” witnesses. In other words, serious life and death issues. So much for our expertise as a species, eh?!

How the human mind struggles with math!

We recently also learned that the hullabaloo over H1N1 pandemic influenza had a lot do with our naive understanding of math, the pitfalls of corporate-driven public-interest research notwithstanding.

Anyhow, one of my main feelings is that honing one’s math not only helps us survive better, but it can also teach us about our place in the universe. Because we can then begin to fully use it as a sensory organ in its own right. Which is why a lot of pure scientists have argued that doing math for math’s own sake can not only be great fun (if done the right way, of course :-P) but should also be considered necessary. Due to the fact that such research has the potential to reveal entirely new vistas that can enchant us and surprise us at the same time (take Cantor’s work on infinity for example). For in the end, discovery, really, is far more enthralling than invention.

UPDATE 1: Check out the Khan Academy for a virtually A-Z education on math — and all of it for free! This is especially a great resource for those of us who can’t even recall principles of addition, subtraction, etc. let alone calculus or any of the more advanced stuff.

Copyright © Firas MR. All rights reserved.


# Footnotes:

  1. ذرا غور فرمائیے اپنے انسان ہونے کی حیثیت پر
  2. Decision Tree Questions In Genetics And The USMLE
  3. The Story Of Sine
  4. On The Impact Of Thinking Visually
  5. A Brief Tour Of The Field Of Bioinformatics
  6. Know Thy Numbers!

, , , , ,