My Dominant Hemisphere

The Official Weblog of 'The Basilic Insula'

The Mucking About That Pervades Academia In Scientific Pursuit

with one comment

Bureaucracy (by Kongharald @ Flickr by-sa license)

Howdy readers!

I’ve not had the chance yet to delve into the bureaucracy of academia in science, having relegated it to future reading and followup. Some interesting reading material that I’ve put on my to-read list for future review is:

Academic medicine: a guide for clinicians
By Robert B. Taylor

Advice for a Young Investigator
By Santiago Ramón y Cajal, Neely Swanson, Larry W. Swanson

Do let me know if there any others that you’ve found worth a look.

In the meantime, I just caught the following incisive read on the topic via a trackback to my blog from a generous reader:

    Lawrence, P. A. (2009). Real Lives and White Lies in the Funding of Scientific Research. PLoS Biol, 7(9), e1000197. doi:10.1371/journal.pbio.1000197

Writing about the odious tentacles that young academics have to maneuver against, author Peter Lawrence of Cambridge (UK) says that “the granting system turns young scientists into bureaucrats and then betrays them”.

He then goes on to describe in detail with testimonies from scientists as to how and why exactly that’s the case. And concludes that not only does the status quo fundamentally perverse freedom in scientific pursuit but also causes unnecessary wastage sometimes to the detriment of people’s careers and livelihoods despite their best endeavors to stay dedicated to the pursuit of scientific knowledge. And how this often leads to die hard researchers dropping out from continuing research altogether!

Some noteworthy excerpts (Creative Commons Attribution License):


The problem is, over and over again, that many very creative young people, who have demonstrated their creativity, can’t figure out what the system wants of them—which hoops should they jump through? By the time many young people figure out the system, they are so much a part of it, so obsessed with keeping their grants, that their imagination and instincts have been so muted (or corrupted) that their best work is already behind them. This is made much worse by the US system in which assistant professors in medical schools will soon have to raise their own salaries. Who would dare to pursue risky ideas under these circumstances? Who could dare change their research field, ever?—Ted Cox, Edwin Grant Conklin Professor of Biology, Director of the Program on Biophysics, Princeton University


the present funding system in science eats its own seed corn [2]. To expect a young scientist to recruit and train students and postdocs as well as producing and publishing new and original work within two years (in order to fuel the next grant application) is preposterous. It is neither right nor sensible to ask scientists to become astrologists and predict precisely the path their research will follow—and then to judge them on how persuasively they can put over this fiction. It takes far too long to write a grant because the requirements are so complex and demanding. Applications have become so detailed and so technical that trying to select the best proposals has become a dark art. For postdoctoral fellowships, there are so many arcane and restrictive rules that applicants frequently find themselves to be of the wrong nationality, in the wrong lab, too young, or too old. Young scientists who make the career mistake of concentrating on their research may easily miss the deadline for the only grant they might have won.


After more than 40 years of full-time research in developmental biology and genetics, I wrote my first grant and showed it to those experienced in grantsmanship. They advised me my application would not succeed. I had explained that we didn’t know what experiments might deliver, and had acknowledged the technical problems that beset research and the possibility that competitors might solve problems before we did. My advisors said these admissions made the project look precarious and would sink the application. I was counselled to produce a detailed, but straightforward, program that seemed realistic—no matter if it were science fiction. I had not mentioned any direct application of our work: we were told a plausible application should be found or created. I was also advised not to put our very best ideas into the application as it would be seen by competitors—it would be safer to keep those ideas secret.

The peculiar demands of our granting system have favoured an upper class of skilled scientists who know how to raise money for a big group [3]. They have mastered a glass bead game that rewards not only quality and honesty, but also salesmanship and networking. A large group is the secret because applications are currently judged in a way that makes it almost immaterial how many of that group fail, so long as two or three do well. Data from these successful underlings can be cleverly packaged to produce a flow of papers—essential to generate an overlapping portfolio of grants to avoid gaps in funding.

Thus, large groups can appear effective even when they are neither efficient nor innovative. Also, large groups breed a surplus of PhD students and postdocs that flood the market; many boost the careers of their supervisors while their own plans to continue in research are doomed from the outset. The system also helps larger groups outcompete smaller groups, like those headed by younger scientists such as K. It is no wonder that the average age of grant recipients continues to rise [4]. Even worse, sustained success is most likely when risky and original topics are avoided and projects tailored to fit prevailing fashions—a fact that sticks a knife into the back of true research [5]. As Sydney Brenner has said, “Innovation comes only from an assault on the unknown” [6].

How did all this come about? Perhaps because the selection process is influenced by two sets of people who see things differently. The first are the granting organisations whose employees are charged to spend the money wisely and who believe that the more detailed and complex the applications are, the more accurately they will be judged and compared. Over the years, the application forms have become encrusted with extra requirements.

Universities have whole departments devoted to filling in the financial sections of these forms. Liaison between the scientists and these departments and between the scientists and employees of the granting agencies has become more and more Kafkaesque.

The second set of people are the reviewers and the committee, usually busy scientists who themselves spend much time writing grants. They try to do their best as fast as they can. Generally, each reviewer reads just one or two applications and is asked to give each a semiquantitative rating (“outstanding,” “nationally competitive,” etc.). Any such rating must be whimsical because each reviewer sees few grants. It is particularly difficult to rank strongly original grants; for no one will know their chances of success. The committee are usually presented with only the applications that have received uniformly positive reviews—perhaps favouring conventional applications that upset no one. The committee might have 30 grants to place in order of priority, which is vital, as only the top few can be funded. I wonder if the semiquantitative and rather spurious ratings help make this ordering just [7]. I also suspect any gain in accuracy of assessment due to the detail provided in the applications does not justify the time it takes scientists to produce that detail.


At the moment, young people need a paper as a ticket for the next step, and we should therefore give deserving, but unlucky, students another chance. One way would be to put more emphasis on open interviews (with presentation by the candidate and questions from the audience) and references. Not objective? No, but only false objectivity is offered by evaluating real people using unreal calculations with numbers of papers, citations, and journal impact factors. These calculations have not only demoralised and demotivated the scientific community [13], they have also redirected our research and vitiated its purpose [14].


Reading the piece, one can’t help but get the feeling that the current paradigm – “dark art” as the author puts it – is a lot like lobbying in politics! It isn’t enough for someone to have an interest in pursuing a research career. Being successful at it requires an in-depth understanding of a lot of the red-tape involved. Something that is such a fundamental aspect of academic life and yet that isn’t usually brought up – during career guidance talks, assessments of research aptitude, recruitment or what have you.

Do give the entire article a read. It’s worth it!

That does it for today. Until we meet again, cheers!

Copyright © Firas MR. All rights reserved.

Powered by ScribeFire.

About these ads

Written by Firas MR

July 23, 2010 at 7:17 pm

One Response

Subscribe to comments with RSS.

  1. [...] Understand the overwhelming bureaucracy in science these days. But don’t get side-tracked! It’s far too big of a boatload to handle on one’s own! There are dangers that lead people to leave science altogether because of this ton of bureaucracy. [...]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

%d bloggers like this: